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By 2100, climate change is predicted to warm high-latitude 
summers by 3–8 °C (ACIA 2005, Christensen et al. 2007). 
High temperatures will become more common in the boreal 
region and, in the absence of significantly increased precipita-
tion, drought frequency and intensity will increase. Much of the 
North American boreal consists of forests dominated by black 
spruce (Picea mariana (Mill.) B.S.P.), a major timber crop that 
dominates frequently flooded soils, but has shallow roots 
(<20 cm deep) and therefore experiences drought stress in 
the absence of frequent rain (Viereck and Johnston 1990). 
Black spruce growth is negatively impacted by heat, due in 
part to rapid soil drying from greater evapotranspiration (ACIA 
2005, Angert et al. 2005). Increased temperatures and 
drought potentially threaten the dominance of black spruce in 
the boreal forest, and have been identified as major causes for 
the sharp increases in mortality rate of boreal tree species, 
including black spruce, that have occurred in North America 
since the 1960s (Peng et al. 2011).

Experiments investigating the response of black spruce to 
warming and drought provide insight into the mechanisms that 
underlie the reduced growth and increased mortality seen in 
this species in the field. Growth at elevated temperatures 
reduces the carbon balance of black spruce seedlings, which 
in turn limits growth, as well as reducing the root to shoot ratio, 
which may make trees more prone to drought stress (Way and 
Sage 2008a, 2008b, Way et al. 2011). Stomatal closure 
appears to be the main mechanism by which black spruce 
avoids lethal water stress (Blake and Li 2003), with conduc-
tance declining at relatively high leaf water potentials 
(−0.25 MPa) and complete closure observed below −1.5 MPa 
(Grossnickle and Blake 1986, Eastman and Camm 1995, Dang 

et al. 1997). However, by reducing stomatal conductance to 
prevent water loss, seedlings substantially reduce their ability 
to assimilate carbon, which may further exacerbate heat-
related growth declines.

In this issue of Tree Physiology, Balducci et al. (2013) look at 
how water stress affects xylem formation, gas exchange and 
survival in black spruce seedlings grown at elevated tempera-
tures of +2 °C and +5 °C above the ambient. While a 32-day 
drought reduced stomatal conductance and photosynthesis, 
there was little evidence for an effect of temperature on these 
leaf-level parameters, which rapidly recovered fully after rewa-
tering. But warming did alter the impact of drought on seedling 
survival: over 12% of the drought-stressed spruce died in the 
warmest treatment, compared with 2% in the ambient tem-
perature environment. The drought also affected xylem forma-
tion over the season. When water was resupplied to the 
drought-stressed, ambient temperature-grown spruce had 
similar cambial activity to the ambient temperature, watered 
seedlings after 2 weeks of recovery. But growth at elevated 
temperatures delayed recovery of cambial activity for an extra 
2 weeks, and reduced wood density. Overall, the effect of 
drought was much stronger than that of increased growth tem-
peratures on the parameters examined, although the delayed 
recovery of growth and increased mortality from water stress 
at elevated temperatures implies that seedlings that develop in 
a warmer climate may be more vulnerable to drought.

While the cause of increased drought-related mortality in 
warm-grown spruce in Balducci et al. (2013) is unknown, it 
echoes recent trends seen in forest stands (Peng et al. 2011) 
and lends support to the concept that combined increases in 
heat and drought are responsible for rising mortality in boreal 
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species. However, there is some good news as well. The simi-
larity in the development of and recovery from leaf-level stress 
across growth temperatures seen in Balducci et al. (2013) is 
encouraging, as it indicates that warming alone may not exacer-
bate water stress-induced damage to photosynthesis and leaf 
function. In fact, there are reasons to think that warming may 
even increase drought tolerance of photosynthesis. Exposure to 
high temperatures often increases the heat stability of photo-
system II (PSII; Havaux 1993), through mechanisms such as 
chaperone protein expression (i.e., heat shock proteins; Vierling 
1991), or changes in thylakoid membrane composition (Sharkey 
2005). Water stress can induce similar protective mechanisms, 
such as an increased degree of saturation in thylakoid mem-
brane lipids (Ferrari-Iliou et al. 1984, Prabha et al. 1985) and 
heat-shock protein expression (Ristic et al. 1998), so that 
drought increases the thermal stability of PSII (Havaux 1992, 
Ladjal et al. 2000). If the interaction between water stress and 
heat stress is reciprocal, and is due to similar physiological 
mechanisms, exposure to high temperatures should lead to 
greater drought tolerance (e.g., Yordanov et al. 1999).

Could warming help mitigate the effect of drought stress in 
black spruce needles? Figure 1 shows the effect of an elevated 
growth temperature treatment of 8 °C on the response of black 
spruce seedlings to drought (see figure legend for experimen-
tal details). In the drought treatment, leaf relative water content 
(RWC) declined linearly with shoot pre-dawn water potential 
(ψPD); there was no difference in the response of RWC to ψPD 
between growth temperatures (Figure 1A). But high tempera-
ture-grown trees maintained a higher maximum yield of PSII 
(measured as the dark-adapted ratio of variable to maximal 
chlorophyll fluorescence (Fv/Fm)) for a given ψPD in the drought 
treatment than trees from ambient temperatures (Figure 1B). 
Since Fv/Fm is relatively insensitive to drought and only declines 
when water stress becomes severe (Epron and Dryer 1992, 
Havaux 1992, Eastman and Camm 1995, Iijima et al. 2006, 
Ditmarova et al. 2010), this implies that the photosynthetic 
apparatus of leaves from elevated temperatures was more tol-
erant of low ψPD than trees grown at current temperatures. By 
the time declines in Fv/Fm were detected, about 50% of the 
needles on a seedling were brown, verifying that trees were 
extremely stressed. This concurs with Ditmarova et al. (2010), 
who also found that Fv/Fm did not decline in water-stressed 
spruce until just before the seedlings died.

With climate warming, it is probable that intense drought will 
increase in the boreal forest, if for no other reason than acceler-
ated evapotranspiration, and temperatures equivalent to the 
warming used by Balducci et al. (2013) will become common 
(ACIA 2005, Christensen et al. 2007). These higher tempera-
tures may enhance leaf-level drought tolerance in black spruce, 
reducing the ψPD where severe photosynthetic stress occurs 
(Figure 1B), and they do not appear to aggravate drought-
induced damage of leaf function (Balducci et al. 2013). This 

could be significant, because drought in the boreal is often 
short-term in duration, developing rapidly in the gap between 
summer rains (Larsen 1980). More studies on how drought 
stress and temperature interact are needed to improve our abil-
ity to predict how elevated growth temperatures and drought 
will affect ecologically and economically important species such 
as black spruce. Also, multi-factor experiments that examine the 
combined effects of rising temperatures and CO2 concentra-
tions on drought stress in trees, such as recent work by Duan 
et al. (2013) and Lewis et al. (2013), are key for making realistic 
predictions of tree responses to future climate scenarios. Given 
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Figure 1.  Effects of elevated growth temperatures on leaf physiological 
parameters under drought stress. A total of 350 1-year old black 
spruce seedlings were grown for 3 months in 3.8-l pots filled with peat 
moss in each of two climate-controlled greenhouses with vapour pres-
sure deficits of 1.4–1.7 kPa. The ambient-temperature (AT) room was 
set to 22/16 °C day/night temperatures to mimic conditions from the 
seed provenance site; the high-temperature (HT) room was set to 
30/22 °C. Water was then withheld from half of the seedlings in each 
room (drought treatment) for 40 days; the other half continued to 
receive ample water. Drought tolerance of photosynthesis was mea-
sured on six seedlings per treatment per day using the Fv/Fm on dark-
adapted needles (PAM-101, Walz, Effeltrich, Germany). Immediately 
afterward, whole shoot ψPD was measured with a pressure chamber 
(PMS Instruments, Corvallis, OR, USA) and the leaf RWC was assessed. 
Figures show the relationship between ψPD and (A) RWC, and (B) Fv/
Fm, in well-watered (circles) and drought-treated (triangles) spruce 
grown at AT (filled symbols and solid lines) or HT (open symbols and 
dashed lines). Means ± SE, n = 2–6. In (A), no difference between 
treatments (P = 0.18), long-dashed line fit to all data: r2 = 0.84; (B) sig-
nificant  difference between growth temperatures (P < 0.0001), solid 
line fit to AT: r2 = 0.93; short-dashed line fit to HT: r2 = 0.87.
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the recent increase in tree mortality due to climate-related 
drought stress (Adams et al. 2010, Allen et al. 2010), particu-
larly in unmanaged boreal forest stands (Peng et al. 2011), 
determining how key tree species will cope with drought in the 
future is a critically important research question.
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